
第 1 页 共 53 页

STM32 Moving Chassis
Development Manual

Dongguan WHEELTEC INTELLIGENT

technology co., LTD
Taobao shop: minibalance.taobao.com

Website: www.wheeltec.net

Recommend to follow our official account for updated information

Version description:

version date Content description

V3.5 2021/01/28 First release

https://minibalance.taobao.com/

第 2 页 共 53 页

Preface
The full set of tutorials for ROS navigation robots includes three documents : "

STM32 Moving Chassis Development Manual", " Ubuntu Configuration Tutorial",

and " ROS Development Tutorial". For the Ubuntu configuration tutorials for virtual

machines and Raspberry Pi (Jetson Nano , Jetson TX2 , industrial computer, etc.),

please see " Ubuntu Configuration Tutorial"; for ROS development tutorials, please

see " ROS Development Tutorial". The content of this document tutorial is mainly

used to explain the kinematic analysis, communication protocol, control mode, etc. of

the ROS robot moving chassis. The moving chassis is equipped with two controllers,

namely the Raspberry Pi (Jetson Nano , Jetson TX2 , industrial computer, etc.) and

the STM32 controller. Data is transmitted between the two through serial

communication. For detailed instructions on the wiring, please see the chapter five.

Among them, the Raspberry Pi (Jetson Nano , Jetson TX2 , industrial computer, etc.)

is installed with Ubuntu to run ROS ; the STM32 controller is used to control the

moving chassis and collect odometer information, battery information,IMU

information.

The task names, function names, etc. appearing in this document are the contents

of the built-in program of the moving chassis. If you do not plan to read the program

of the robot STM32 controller , you can ignore the program functions and program

tasks appearing below (for example: APP_Show() function, Send task data_task ,

data_transition() function), without affecting the reading and understanding of the

entire development manual.

This document applies to the six robots of the ROS educational robot series:

two-wheeled differential car, Ackerman car, Mecanum wheel car, omni-wheel car,

crawler car, and four-wheel drive car.

第 3 页 共 53 页

Directory
Preface..2

1. Robot control mode... 5

1.1 Robot movement speed unit...5

1.2 ROS (serial port 3) control.. 6

1.3 APP control.. 15

1.4 PS2 control... 18

1.5 Hot-RC remote control...19

1.6 CAN control... 22

1.7 Serial port 1 control..24

2. OLED display content... 27

2.1 OLED specific content... 27

2.2 OLED universal display content.. 28

2.3 car self-inspection...29

3. Elimination of gyroscope zero drift.. 30

4. Robot kinematics analysis... 31

4.1 Two-wheel differential (tracked vehicle) car..................................... 31

4.2 Ackerman car... 34

4.3 Mecanum wheel car..36

4.4 Omni wheel car.. 38

4.5 Four-wheel drive car.. 39

4.6 PI control program source code..41

5. Wiring instructions.. 42

6. Control flow chart..45

第 4 页 共 53 页

6.1 Control flowchart of robot motor... 45

6.2 Robot STM32 program structure diagram... 46

6.3 Robot controller connection diagram... 47

7. Matters needing attention.. 48

7.1 About the code..48

7.2 About the power interface on the adapter board.................................. 48

7.3 About the motor..48

7.4 About the battery..49

8. How to download program to STM32 controller......................... 50

8.1 Serial download..50

8.2 SWD download.. 51

第 5 页 共 53 页

1. Robot control mode

This chapter mainly gives a detailed description of the control and use of the

robot. The robot supports 6 control modes: APP remote control, PS2 wired handle

control, ROS control, Hot-RC remote control, CAN control, and serial port control .

The control mode is displayed in the lower left corner of the OLED display, and the

ROS control mode is used by default after booting .

Figure 1-1 Robot control mode

1.1 Robot movement speed unit

Here is an explanation of the unit of robot movement speed, which is m/s

(meters per second) . The calculation formula of the specific "encoder raw data"

converted into " m/s (meters per second) " is shown in Figure 1-1-1 .

Encoder_A_pr is the raw data of the encoder, CONTROL_FREQUENCY is the

control frequency (unit: HZ), Encoder_precision is the accuracy of the encoder

(related to the mechanical structure of the motor and the encoder chip),

wheel_perimeter is the circumference of the wheel (unit: meters), and the final

MOTOR_A .Encoder is the actual movement speed of the robot (unit: m / s). Here

only the encoder data conversion of A motor is shown , and the encoder calculation

conversion of the other B , C and D motors is the same.

Figure 1-1-1 Robot movement speed conversion formula

第 6 页 共 53 页

The positive direction calibration of XYZ three-axis speed is shown in Figure

1-1-2 below.

Figure 1 -1-2 The positive direction of robot XYZ three-axis speed

1.2 ROS (serial port 3) control

After the robot is powered on, the ROS control mode is used by default. This

section only describes how to make the robot move through the ROS environment , in

particular the principles and ROS some relevant definition of the concept see " ROS

Development Manual." For the virtual machine and ros development environment

setup and how to remotely log in to the ubuntu system on the robot , please see "

Ubuntu Configuration Tutorial".

Here is to use the keyboard on the virtual machine to control the robot's

movement.

1 virtual machine remotely logs in to the robot ubuntu system

It should be noted that using the virtual machine to control the robot movement

requires two terminals to be opened separately, and each terminal must be separately

remotely logged in to the robot ubuntu system. Enter the command shown in Figure

1-2-1 in the virtual machine to remotely log in to the ubuntu system of the robot .

Figure 1-2-1 ssh wheeltec@192.168.0.100

2 Run the function package

In the first terminal, open the " turn_on_wheeltec_robot " under the "

turn_on_wheeltec_robot " function package of the robot to enable the robot control

node.

第 7 页 共 53 页

Figure 1-2-2 roslaunch turn_on_wheeltec_robot turn_on_wheeltec_robot.launch

In the second terminal, open the keyboard control node of the robot movement.

In the second terminal, open the " keyboard_teleop " keyboard control node under the

" wheeltec_robot_rc " function package of the robot .

Figure 1-2-3 roslaunch wheeltec_robot_rc keyboard_teleop.launch

After opening the keyboard control node, you can see some control prompts. At

this time, you can use the keyboard to control the robot movement. The specific

keyboard control corresponding effects are shown in Table 1-1 . Press " crtl+c " or

close the terminal directly to exit the control node.

Figure 1-2-4 Open the keyboard control node terminal information

Table 1-1 Description of keyboard control robot motion instructions

Keyboard

keys

u i o j k l m ,

Robot

achieve

effect

Left

front

move

ment

Forw

ard

move

ment

Right

front

move

ment

Turn

left

Emer

gency

stop

Turn

right

Left

back

move

ment

Back

move

ment

Keyboard

keys

. Space q z w x e c

第 8 页 共 53 页

Robot

achieve

effect

Right

back

move

ment

Emer

gency

stop

Move

ment

speed

+10%

Move

ment

speed

-10%

line

speed

+10%

line

speed

-10%

angle

speed

+10

%

angle

speed

-10%

3 STM32 sends data to ROS

The communication between ROS and STM32 controller (moving chassis) is

realized through serial port. STM32 controller uses serial port 3 and the baud rate is

115200. Communication protocol includes: STM32 controller send data to ROS, ROS

transmit data to STM32 controller. Open the source code of the STM32 controller.

The code for serial communication is in the usartx.c file of the STM32 controller .

STM32 sends data to ROS and uses a date_task task to execute at a frequency of

20hz . The data sent includes: frame head and end, robot enable flag, robot XYZ

three-axis speed, IMU three-axis acceleration, three-axis angular velocity, battery

voltage, data check bit , detailed data sent see Table 1-2 below .

The way of sending data: Pack the data to be sent into an array, the length of the

array is 24 bytes, and use the serial port to send out bit by bit. Because the serial port

can only send one 8 -bit (1 byte) data at a time, the 2 -byte (short type) data will be

split into the upper 8 bits and the lower 8 bits for transmission.

The function assigned to the data before sending it is the "data_transition()"

function in the "usartx.c" file; the function that sends the data is the

"USART3_SEND()" function in the "usartx.c" file.If you need to change the content

of the data sent, just change the data_transition() function; if you need to change the

length of the data to send, you need to change " SENT [] " array length of this at the

same time also need to modify " USART3_SEND () " function for the number of

cycles and the length of the data received by the ROS terminal must be modified

accordingly.

What needs to be explained in the data sent is that the frame header is a fixed

value of 0X7B , the frame end is a fixed value of 0X7D , and flag_stop is the stop flag

第 9 页 共 53 页

bit of the motor (0 is enabled, 1 is disabled). The calculation method of the data

check bit is BCC check (All data bits (including the frame header) are XOR), and the

final result is the data check bit. The calculation process of the data check bit is shown

in Figure 1-2-6 .

Figure 1-2-5 USART3_SEND() function

Figure 1-2-6 Data check digit calculation function

Table 1-2 Data sent by STM32 to ROS

data

content

Frame

header

(Fixed

value

0X7B)

flag_stop robot

X axis

speed

robot

Y axis

speed

robot

Z axis

speed

Accelerom

eter X axis

Accelerati

on

Accelerom

eter y axis

Accelerati

on

data

Types

Uint8 Uint8 short short short short short

第 10 页 共 53 页

of

Occupy

byte

1 1 2 2 2 2 2

Array

number

1 2 3 4 5 6 7 8 9 10 11 12

data

content

Accelero

meter z

axis

Accelerat

ion

Angular

velocity

meter X

axis

Angular

velocity

Angular

velocity

meter Y

axis

Angular

velocity

Angular

velocity

meter

Z axis

Angular

velocity

battery

Voltage

data

Check

Digit

End of

frame

(Fixed

value

0X7D)

data

Types

of

short short short short short Uint8 Uint8

Occupy

byte

2 2 2 2 2 1 1

Array

number

13 14 15 16 17 18 19 20 21 22 23 24

There is another point to note here . The raw data of the robot XYZ three-axis

speed, accelerometer, angular velocity meter and battery voltage are floating-point

data (float), because the floating-point data is inconvenient to use the serial port to

transmit, so these four before sending the data, amplify the floating-point number by a

thousand times (reserve three decimal places), then force the amplified floating-point

number into short data, and finally split the short data into two 8 -bit data before

sending data. Correspondingly, after the host computer receives the data, it needs to

merge the two 8 -bit data of the received data and convert it into a short type, and then

convert the unit after shrinking it by a thousand times.

第 11 页 共 53 页

The following explains how to merge two 8 -bit data and convert them to short

type, that is to get our actual speed and other data: our control quantity unit is mm/s

(0.001m/s) , and the control quantity direction is from the high 8 -bit data The highest

bit of the decision.

Example 1 : 21 B6=0010 0001 1011 011 , the highest bit is 0 , positive number,

the speed is 21B6=(2*16+1)*256+(B*16+6)=(2*16+1)*256+(11*16+6)=8630(mm/s).

Example 2 : A1 2F=1010 0001 0010 1111 , the highest bit is 1 , negative number,

the speed is 2^16(FF FF+1)-A1 2F=5E D0+1=(5*16+E)*256+(D*16+0)+1=24272(mm/s) .

The following picture shows the actual data received through the serial port

assistant after we connect to the serial port 3 . (Note that our serial port 3 is not

integrated with CH340 , and we need to use the data cable for communication

between ROS and STM32 , so the serial port assistant can communicate with STM32

serial port 3) .

Figure 1 -2-7 Data sent by car serial port 3

第 12 页 共 53 页

Let's convert the received 24 bytes of data:

The first bytee: 0x7B , header;

The second byte: 0X00 , the motor is in a non-stop state;

The 3rd and 4th bytes: X axis speed, high 8 bits 0X01 (hexadecimal) = 0000

0001 (binary) , low 8 bits 0X01 (hexadecimal) = 0000 0001 (binary) , the highest

bit It is 0 , a positive number (forward) , and the speed is 1*256+1=257(mm/s) . This

speed is the actual speed calculated by the car on the encoder data.

The 5th and 6th bytes: Y- axis speed, high 8 bits 0X00 (hexadecimal) = 0000

0000 (binary) , low 8 bits 0X01 (hexadecimal) = 0000 0001 (binary) , the highest

bit It is 0 , a positive number (left shift) , and the speed is 0*256+1=1(mm/s) . This

speed is the actual speed calculated by the car on the encoder data.

The 7th and 8th bytes: Z axis speed, high 8 bits 0X00 (hexadecimal) = 0000

0000 (binary) , low 8 bits 0X00 (hexadecimal) = 0000 0000 (binary) , the highest

bit It is 0 , a positive number (counterclockwise rotation) , and the speed is

0*256+0=0(0.001rad/s) . This speed is the actual speed calculated by the car on the

encoder data.

Figure 1 -2-8 Three-axis schematic diagram of Figure 1 -2-9 Robot XYZ three-axis calibration

MPU9250 accelerometer and angular velocity meter

The next 12 bytes are the data of the three-axis accelerometer and angular

velocity meter. Note that the three-axis direction of XYZ has changed. The positive

direction of X- axis is rightward, the positive direction of Y- axis is forward, and the

positive direction of Z- axis is ascending. The speed of the accelerometer and angular

velocity meter is the speed of rotation around the XYZ three axes, as shown in Figure

1-2-8 above. Because gyro XY robot axis direction with our calibration XY -axis

第 13 页 共 53 页

direction has a difference, so the XY angular velocity and the angular velocity data in

the transmission shaft made a correct conversion.

The 9th and 10th bytes: X- axis acceleration, high 8 bits 0XFE

(hexadecimal)=1111 1110 (binary) , low 8 bits 0X96 (hexadecimal)=1001 0110

(binary) , the highest bit It is 1 , a negative number, and the size is 2^16(FF

FF+1)-FE 96 =01 69=1*256+105=361 , which is converted into acceleration

361/1672=0.2159(
2m/s).

The 11th and 12th bytes: Y- axis acceleration, high 8 bits 0XFD

(hexadecimal)=1111 1101 (binary) , low 8 bits 0XCE (hexadecimal)=1100 1110

(binary) , the highest bit It is 1 , a negative number, and the size is 2^16(FF

FF+1)-FD CE =02 31=2*256+49=561 , which is converted to acceleration

561/1672=0.3355(
2m/s).

The 13th and 14th bytes: Z- axis acceleration, high 8 bits 0X40 (hexadecimal) =

0100 0000 (binary) , low 8 bits 0X80 (hexadecimal) = 1000 0000 (binary) , the

highest bit It is 0 , a positive number, and the size is 64*256+128=16512 , which is

converted to acceleration 16512/1672=9.8756(
2m/s).

The 15th and 16th bytes: X axis angular velocity, high 8 bits 0XFF

(hexadecimal)=1111 1111 (binary) , low 8 bits 0XFB (hexadecimal)=1111 1011

(binary) , the highest bit It is 1 , a negative number, and the size is 2^16(FF

FF+1)-FF FB =00 04=0*256+4=4 , converted to angular velocity

4/3753=0.0011(rad/s) .

The 17th and 18th bytes: Y- axis angular velocity, high 8 bits 0X00

(hexadecimal) = 0000 0000 (binary) , low 8 bits 0X07 (hexadecimal) = 0000 0111

(binary) , the highest bit It is 0 , a positive number, and the size is 0*256+7=7 ,

which is converted to angular velocity 7/3753=0.0019(rad/s) .

The 19th and 20th bytes: Z axis angular velocity, high 8 bits 0X00

(hexadecimal) = 0000 0000 (binary) , low 8 bits 0X01 (hexadecimal) = 0000 0001

(binary) , the highest bit It is 0 , a positive number, and the size is 0*256+1=1 ,

which is converted to angular velocity 1/3753=0.0003 (rad/s) .

第 14 页 共 53 页

The 21st and 22nd bytes: battery voltage, high 8 bits 0X58 (hexadecimal)=0101

1000 (binary) , low 8 bits 0X38 (hexadecimal)=0011 1000 (binary) , the highest

bit is 0 , a positive number, the size is 88*256+56=22584 , and the voltage size is

22584mv (millivolt) .

The 23rd byte: BCC check digit (exclusive OR of the first 22 bytes) ,

0X83=0X7B^0X00^0X01^0X01^0X00^0X01^0X00^0X00^0XFE^0X96^0XFD^0X

CE^0X40^0X80^0XFF^ 0XFB^0X00^0X07^0X00^0X01^0X58^0X38 .

(If you want to verify the result of this check digit, you can use some web and online

platforms to calculate the check digit)

The 24th byte: 0X7D , end of frame;

4 STM32 receives the data sent by ROS

The STM32 controller board is equipped with CH340 (serial port 1) and CP210

(serial port 3) two serial communication interfaces. The two serial ports receive data

processing procedures are exactly the same. By default, CP2102 (serial port 3) is

used for serial communication with ROS. Take the serial port 3 to receive data as an

example.

The received data adopts the interrupt receiving method. The received data

includes the robot product signal, the enable control flag bit, the robot three-axis

target speed, and the data check bit.

The frame head and frame end are fixed values by default; flag_stop is the enable

control bit of the robot, which enable is sent by default; the robot's three-axis target

speed is used to control the robot's movement. The specific receiving content is shown

in Table 1-3 . It should be noted that the array number in the table is the array number

of the data sent by the host computer.

第 15 页 共 53 页

Table 1-3 STM32 receives the data sent by ROS

data

content

Frame

header

(Fixed

value

0X7D)

Reser

ved

Reser

ved

robot

X axis

Target

speed

robot

Y axis

Target

speed

robot

Z axis

Target

speed

data

Check

Digit

End of

frame

(Fixed

value

0X7B)

data

Types

of

Uint8 Uint8 Uint8 short short short Uint8 Uint8

Occupy

byte

1 1 1 2 2 1 1 1

Array

number

1 2 3 4 5 6 7 8 9 10 11

Note: Differential cars and Ackerman cars do not support Y- axis movement

control. Only mecanum-wheel cars and omni-wheel cars support Y- axis movement

control.

Among the 7 ways to control the robot, the control priority of ROS is the highest.

Whenever the serial port 3 of the STM32 controller receives data, it is forced to enter

the ROS mode. The reason for not receiving data in the first 10 seconds is to eliminate

the useless data sent during the robot power-on process. To start receiving data after a

waiting period of 10 seconds, first detect the data frame header, and start receiving

data after detecting the data frame header; after the data is received, verify whether

the data check bit at the end of the frame is wrong, and use data only if the data check

bit is correct. Please refer to the USART3_IRQHandler() serial port interrupt function

in the usartx.c file for details of the serial port interrupt receiving data .

1.3 APP control

The robot supports APP Bluetooth control and online parameter adjustment. In

第 16 页 共 53 页

APP mode, directly use the joystick to control the movement of the robot in space.

The speed unit of APP controlling the robot movement is mm/s (millimeters /

second). The acceleration and deceleration buttons on the diagonally above the

joystick will increase / decrease the speed of the robot by 100 (mm/s) every time you

press it .

While the APP is controlling the robot , the robot will send data to the mobile

phone via Bluetooth (the APP supports both WIFI and Bluetooth communication) .

You can see the sent data in the Debug column of the APP. See the APP_Show()

function in the code's show.c file for details on what to send. APP control mode the

principle is the Bluetooth (or WIFI) serial communications control, the robot 's APP

control use the serial port 2 , the baud rate is set to 9600 , which the control command

is in the serial port 2 receive interrupt service function.

1 Online tuning

Install the latest version of MiniBalance APP on your Android phone, and then

follow the corresponding video tutorials to remotely control the robot or perform

online parameter adjustments. In the "Debug" interface, you can click the "parameter

x " to customize the name of each channel . The specific effect is shown in Figure

1-3-1 and Figure 1-3-2 . In addition, before adjusting the PID parameters, we need to

click [Get Device Parameters] (call up by the menu button in the upper right

corner) , update the robot's PID parameters to the APP , and then drag the slider.

When we let go, the APP can send the parameters to the robot.

Parameter 0 is the speed parameter of the car, and adjusting parameter 0 can

adjust the speed of the car.

Parameters 1 and 2 are PI parameters for the motion control of the car .

It should be noted that, assuming that the current robot control speed is 40 , when

we want to adjust the speed parameter to 150 (out of range), we need to adjust it to 80

for the first time , and then click [Get device parameters] again , then the adjust

range is changed to 0-160 . Speed range set in the robot is 20- 200. For a detailed

explanation of the robot control speed unit, please refer to "Chapter 3 Robot

Movement Speed Unit" below.

第 17 页 共 53 页

Figure 1-3-1 Default tuning interface Figure 1-3-2 Interface after obtaining device parameters

(Need to modify the parameter name by yourself)

2 APP control robot

Figure 1-3-3 APP control interface

第 18 页 共 53 页

Each operation corresponding to the APP operation interface actually sends

different instruction information to the robot (switching control methods and

interfaces also send instructions), the robot responds after receiving the instruction

information, the detailed information sent by each operation of the APP operation

interface is shown in the table 1-4 :

Table 1-4 Description of APP interface operation instructions

APP joystick

Data

received by

the robot

0x41 0x42 0x43 0x44 0x45 0x46 0x47 0x48

Robot

achieve

effect

Forw

ard

move

ment

Right

front

move

ment

Turn

right

in

place

Right

back

move

ment

Back

move

ment

Left

back

move

ment

Turn

left

in

place

Left

front

move

ment

button gravity Joystick button slow

down

accel

erate

Data

received by

the robot

0x49 0X4a 0x4b 0x59 0x58

Note: After the mobile phone is successfully connected to the Bluetooth of the

car, you need to push the joystick forward for 0.5 seconds to formally control the car.

1.4 PS2 control

PS2 mode uses PS2 wireless controller. The sequence of PS2 mode control is:

first plug in the PS2 controller before powering on, and then turn on the power. At this

time, the red light on the controller is always on to indicate normal operation. If the

indicator is off, press the button above the indicator and press the START button to

enter the handle mode. At this time, you can see " PS2 " displayed on the lower left

corner of the display .

第 19 页 共 53 页

In PS2 mode, use the left joystick to control the robot to move forward and

backward, the right joystick to control the left and right steering of the robot (the

omnidirectional motion car is the left joystick to control the movement of the car in 8

directions in the space, and the right joystick to control the car in place self-rotating

motion) . The reason for this design is that if the same joystick is used for the front

and rear and left rear controls, it is easy to accidentally touch the steering. The two

buttons in the upper left corner are acceleration and deceleration buttons.

Note: In PS2 mode, the PS2 handle must be plugged in before powering on,

otherwise it is easy to burn the handle and cause the motor to rotate randomly. You

need to press the Start button on the PS2 handle to enter PS2 handle mode after

starting up.

Figure 1 -4-1 PS2 handle physical picture

1.5 Hot-RC remote control

It should be noted that the Ackerman car does not support remote control of

Hot-RC.

The correct use steps of the Hot-RC remote control are: first connect the Hot-RC

remote control receiver to the car, turn on the power of the Hot-RC remote control,

power on the car, and the indicator light of the Hot-RC remote control receiver is

第 20 页 共 53 页

always on, indicating that it is connected, and now you can see that the bottom left

corner of the screen says "R-C". The control method of the Hot-RC remote control is:

the left joystick of the Hot-RC remote control controls the car to move forward and

back, the right joystick controls the car to turn left and right (the omnidirectional

movement car is the left joystick to control the movement of the car in 8 directions in

the space, and the right joystick controls the car rotates in place) , and at the same

time, turning the right joystick back and front can control the speed of the car, which

is equivalent to the throttle (the throttle function does not support the Ackerman car) .

The SWC switch on the upper right controls the car to select normal mode and low

speed mode. Before turning off the Hot-RC, you need to turn off the car and then turn

off the Hot-RC remote control.

Figure 1-5-1 The physical picture of the remote control aircraft model

It should be noted that the remote control channel of the Hot-RC needs to be

configured as shown in Figure 1-5-2 , where the leftmost button is in the middle, and

the remaining four buttons are in the bottom. These channels are for adjusting the

direction of control.

第 21 页 共 53 页

Figure 1-5-2 The physical image of the remote control aircraft

Next, I will explain how to connect the RC receiver to the adapter board.

Figure 1 -5-3 Physical image of the Hot-RC Figure 1 -5-4 Model aircraft interface on the adapter board

receiver

Table 1-5 Corresponding channels of model airplane remote control pins

Hot-RC receiver GND 5V CH1 CH2 CH3 CH4

Adapter board G 5V PE9 PE11 PE13 PE14

As shown in Figure 1-5-3 , Figure 1-5-4 and Table 1-5 , the Hot-RC receiver has

three columns, which are GND , 5V and signal line. When we use it, connect GND

and 5V. Then the signal line CH1 , the CH2 , a CH3 , of CH4 are respectively

connected to the adapter plate pin PE9 , PE11 , PE13 , PE14 . The PE14 pin is only

needed for the omni-directional movement of the car, and is used for left and right

traverse.

第 22 页 共 53 页

Figure 1 -5-5 Wiring example of airplane model

1.6 CAN control

The car supports CAN communication, and the connection mode of CAN

communication is CANL to CANL and CANH to CANH . If you want the car to

receive CAN control commands, you need to send an enable command to the CAN

interface first , and the baud rate is 1M .

The enable command format is as follows:

Identifier ID: 0X121

Frame type: standard frame

Frame format: DATA

DLC: 8 bytes

Table 1-6 CAN enable command

Data field tx[0] tx[1] tx[2] tx[3] tx[4] tx[5] tx[6] tx[7]

content 10 12 15 19 24 30 37 Flag

Note: The data in this table is 10 hexadecimal form

When Flag=1 , CAN control is enabled, and the controller will no longer receive

commands from other control modes. After CAN control is enabled, you can see "

CAN " in the lower corner of the display , and then we can send CAN commands to

control the car. The description of the control instruction is as follows:

Identifier ID: 0X121

Frame type: standard frame

Frame format: DATA

第 23 页 共 53 页

DLC: 8 bytes

Table 1-7 The car receives CAN control commands

Data

field

rx[0] rx[1] rx[2] rx[3] rx[4] rx[5] rx[6] rx[7]

conte

nt

car X

direction

control

amount 8

bits

higher

car X

direction

control

amount

8 bits

lower

car Y

direction

control

amount

8 bits

higher

car Y

direction

control

amount 8

bits lower

car Z

direction

control

amount 8

bits

higher

car Z

direction

control

amount

8 bits

lower

Reser

ved

Reser

ved

rx[6] and rx[7] are reserved data bits for us to add the data we need to transmit.

CAN communication comes with BCC check, so no data check bit is needed here.

Note: Differential cars and Ackerman cars do not support Y- axis movement

control, so the control amount in the Y- axis direction is 0 by default .

The car can also send its own data while receiving CAN command control. The

function that executes CAN sending data is CAN_SEND() located in the file

[usartx.c] . By default, the task of sending data has been opened and the data to be

sent has been set. If you need to customize sending other content, just replace

CAN_SEND the content of Send_Data.buffer[i] in the function CAN_SEND is

sufficient .

Due to the large number of data to send a total of 24 bytes, the data is sent 8

bytes at a time, and sent in 3 times, the SCM receiving the data sent by the car can

confirm the group of data currently received through the identifier ID, the identifier

for sending the first group of data is 0X101 , the identifier for sending the second

group of data is 0X102 , and the identifier for sending the third group of data is

0X103. The detailed content of CAN transmission of the car is shown in the following

table. The content of CAN transmission data is the same as that of serial port 1 and

serial port 3 (the interface for communicating with ROS) . For this part, please refer

to section 1.2 ROS (serial port 3) control.

第 24 页 共 53 页

Our supporting CAN sending routine is equipped with the interrupt service

function of CAN receiving to receive the data sent by the car. Single-chip computer

models of routine code adaptation is STM32F103RC or with series single chip

microcomputer, at the same time, VP230 chip is needed to convert the data of the

SCM before formal CAN communication with the car, the wiring as shown below,

MCU PD1, PD0 pins are connected to VP230 D, R pins, VP230 CANH, CANL pins

are connected to the car CANH, CANL pins (i.e. H to H , L to L) .

Figure . 1 -6-1 by the microcontroller and the car VP230 Conversion

If you want to check whether the data received by CAN communication is

correct, you can use the host computer to connect the serial port 1 of the

microcontroller . After the single-chip microcomputer receives the information sent

by the CAN communication of the car , it will send it out through the serial port 1 of

the single-chip microcomputer , and the baud rate is 9600 .

Note: The CAN and serial port routines provided in the information are not the

codes running on the car. It does not mean that you need to download the serial port

routines if you need serial communication. The car already has a program (firmware)

by default, and you can operate it without downloading any program. The CAN and

serial port routines provided by the data are programs that can be run on other

microcontrollers to communicate with the car.

1.7 Serial port 1 control

Two serial communication interfaces of serial port 1 (CP210) and serial port 3

(CP210) are led out on the STM32 controller board. The two serial ports send (the

content sent is also the same) and receive data processing procedures are exactly the

第 25 页 共 53 页

same. Serial port 3 is used by default for serial port communication with ROS

terminal. For the use of serial port 1 , please refer to section 1.2 ROS (Serial Port 3)

control in the previous section of this article .

When serial port transmission, it is necessary to pay attention to the same baud

rate settings of both communication parties. The baud rate of serial port 1 in the

program is 115200 . After receiving the data from the serial port 1 , the car enters the

serial port control mode, and the lower left corner of the display shows " USART ".

Table 1-8 The car receives serial control commands

Note: Differential cars, Ackerman car, tracked vehicles, and four-wheel drive

vehicles do not support Y- axis movement control. Only mecanum-wheel cars and

omni-wheel cars support Y- axis movement control. Download the serial port sending

instruction routine provided by us to another single-chip microcomputer, connect the

serial communication cable between the single-chip microcomputer and the car

controller, and the car enters the serial port control mode.

Data

field

Frame

header

tx[0] tx[1] tx[2] tx[3] tx[4] tx[5] tx[6] tx[7] tx[8] End of

frame

content 0X7B Reser

ved

Reser

ved

The

higher 8

bits of

the

control

amount of

the car

in X

directio

n

The

lower 8

bits of

the

control

amount

of the

car in X

directio

n

The

higher 8

bits of

the

control

amount

of the

car in Y

directio

n

The

lower 8

bits of

the

control

amount

of the

car in Y

directio

n

The

higher 8

bits of

the

control

amount

of the

car in Z

directio

n

The

lower 8

bits of

the

control

amount

of the

car in Z

directio

n

BCC

Check

Digit

OX7D

第 26 页 共 53 页

Figure 1-7-1 The control command sent by the serial port command routine to the car

Similarly, you can directly send data to the serial port 1 of the car through the

host computer serial port assistant , as shown in Figure 1-7-2 .

Figure 1-7-2 The control command sent by the serial port assistant to the car

Serial port 1 and serial port 3 (ROS) control the same commands for receiving

and controlling. For the calculation and conversion of the speed control amount of the

car and the content of the data sent by the car, please refer to our section 1.2 ROS

(serial port 3) control.

第 27 页 共 53 页

2. OLED display content

2.1 OLED specific content

The robot is equipped with an OLED display, and the contents displayed on the

display of different types of robots are similar, as follows:

1 Tank vehicles

Figure 2-1-1 tracked vehicle OLED display content

2 Ackerman car

Figure 2 - 1 -2 Ackerman car OLED display content

3 Two-wheel differential car

Figure 2-1-3 two-wheel differential car OLED display content

4 Omni-wheel car

第 28 页 共 53 页

Figure 2-1-4 omni wheel car OLED display content

5 Mecanum-wheel car

Figure 2-1-5 mecanum wheel car OLED display content

6 Four-wheel drive car

Figure 2-1-6 four-wheel drive OLED display content

2.2 OLED universal display content
1 Control mode

Different control modes correspond to different display contents in the lower left

corner, see Table 2-1 for details .

Table 2-1 Robot OLED display control mode

mode CAN APP PS2 handle Hot-RC remote

control

Serial port

1

Serial port

3

Display content CAN APP PS2 RC UART1 UART3

2 Enable switch

The enable switch is at the upper left corner of the robot STM32 controller. The

robot motor can only be controlled when the enable switch is in the " ON " state.

第 29 页 共 53 页

Taking into account the stability of the robot in the program , the motor is in a forced

disable state within 10s after the STM32 controller is powered on . At this time, even

if your enable switch is in the " ON " state, it will display " OFF ", and it will be

updated to " ON " after 10s . It should be noted that the serial port 1 and serial port 3

will not receive data within 10s .

2.3car self-inspection
The car is equipped with a self-test codes, see the detailed contents of the

document "model, wiring, check encoder tutorial .doc ."

第 30 页 共 53 页

3. Elimination of gyroscope zero drift

The IMU sensor is needed in the ROS navigation system . In our ROS robot

system, the IMU sensor is integrated into the STM32 controller. The STM32

controller collects the IMU data and sends it to ROS . The IMU used on the STM32

sports chassis is MPU9250 . The IMU integrates a three-axis angular velocity meter, a

three-axis accelerometer, and a three-axis magnetometer. Here we only need the

angular velocity meter and accelerometer. Gyroscopes cannot avoid the problem of

zero drift, so a zero drift elimination mechanism is set in the program.

In the first 10 seconds of power-on, the gyroscope reads the angular velocity

value without removing the zero drift value. At the second 10, the program reads the

current angular velocity value as the drift value. The gyroscope data read after 10

seconds will subtract the zero point offset. At this time, the LED light changes from

constant light to flashing. The angular velocity value read in the subsequent reading

process will subtract the zero point drift value, and the result is angular velocity that

eliminates the zero drift.

If you feel that the gyroscope drift value obtained in 10 seconds is not accurate

enough, you can double-click the user button (the lower left corner of the STM32

controller) at any time to retrieve the gyroscope drift value.

The process of collecting gyroscope data described above is in the get_sensor.c

file of the STM32 controller code, as shown in Figure 3-1 .

Figure 3-1 Collect gyroscope data

第 31 页 共 53 页

4. Robot kinematics analysis

In order to make the robot move, it is not enough to provide the target speed. The

target speed of the robot needs to be converted to the actual target speed of each motor.

Finally, the control of the motor is realized according to the target speed of the motor.

The process of converting the target speed of the robot into the target speed of the

motor is called “kinematic analysis”. Kinematics analysis is divided into forward and

inverse solutions. Before kinematics analysis, let’s explain separately what are

forward kinematics and inverse kinematics. :

①Forward kinematics solution: Calculate the speed of the robot in the X , Y and

Z directions through the speed of each wheel of the robot .

②Inverse kinematics solution: Calculate the speed of each wheel of the robot by

the speed of the robot's X- axis, Y- axis and Z- axis.

4.1 Two-wheel differential (tracked vehicle) car

Figure 4-1 Kinematics model of two-wheel differential car

第 32 页 共 53 页

1 kinematic analysis

The simplified motion model of the robot is shown in Figure 4-1, X-axis positive

direction is forward, the Y-axis positive direction is the left translation, the Z-axis

positive direction is counterclockwise (the product below are the same, will be

omitted) . The distance between the two wheels of the robot is D , the speeds of the

X- axis and Z- axis of the robot are respectively: xV and zV , and the speeds of the

left and right wheels of the robot are respectively: LV and RV .

Assuming that the robot travels in a left-front direction for a certain distance, the

distance that the right wheel of the robot travels more than the left wheel is

approximately K, and the point on the wheel of the robot is used as the reference point

to extend the reference line, and then: 1θ = 2θ .

Since this Δt is very small (10ms), the amount of angle change 1θ is also very

small, so there is an approximate formula:

D
K=θsin≈θ 22 ）（

From mathematical analysis, the following formula can be obtained:

Δt
θ=，Δt*)V-(V=K 1

LR 

The result of the positive kinematics solution can be solved by the above

formula:

The speed in the X- axis direction of the robot 2
V+V=V RL

X
, and the speed in

the Z- axis direction of the robot D
VV=V LR

Z


.

The result of the inverse kinematics solution is obtained directly from the

positive solution:

第 33 页 共 53 页

The speed of the left wheel of the robot 2
D*V-V= V z

xL
, the speed of the right

wheel of the robot 2
D*VV= V z

xR 
.

2 C language implementation

There are two motors with encoders on the robot. We need to write the above

motion relationships in C language, and then control the motors. Code show as below:
void Drive_Motor(float vx,float vz)

{

Target_Left = vx - vz * WIDTH_OF_ROBOT / 2.0f; // Calculate the target speed of

the left wheel

Target_Right = vx + vz * WIDTH_OF_ROBOT / 2.0f; // Calculate the target speed of

the right wheel

}

The above statement is to find the target speed of the two motors (inverse

kinematics solution) through the speed of the X and Z axis of the robot , where

WIDTH_OF_ROBOT is the macro definition of the linear distance between the two

wheels.

第 34 页 共 53 页

4.2 Ackerman car

Figure 4 -2 Kinematics model of Ackerman car

1 kinematic analysis

The difference between the Ackerman car and the two-wheel differential car is

that the front wheels of the two-wheel differential car are omnidirectional wheels or

universal wheels, while the front wheels of the Ackerman car are ordinary "one-way

wheels". At this time to make Ackerman car to achieve pure rolling motion, it must

ensure that the four wheels of the car normal direction of movement intersect at one

point, the turning point compared with the center point , as shown in Figure 4-2 point

O .

To simplify the model, suppose that the front wheel has only one wheel (the

realization theory is the same) , which is located in the middle of the front axle, as

shown in the front wheel depicted by the dotted line in Figure 4-2 .

As seen from the Ackerman car kinematics model, When the current wheel

第 35 页 共 53 页

Angle is θ, the car steering radius is R . Let the forward speed of the car be V

(i.e. xV) , the left wheel velocity LV and right wheel velocity RV , the angular

velocity can be obtained by the consistency: R

R

L

L

R
V

R
V

R
V


,

there
tanθ

R
H


, 2
D-RR L 

, 2
DRR R 

.Then

)
2H
tanθ*D-(1*VR

R
VV LL 

,
)

2H
tanθ*D(1*VR

R
VV RR 

.

2 C language implementation

void Kinematic_Analysis(float Vx,float Vy,float Vz)

{

float angle=0;

MOTOR_A.Target = Vx*(1-(WheelSpacing/(2*AxleSpacing))*tan(Vz*PI/180));//The

wheel speed should be calculated according to the actual front wheel angle Vz

MOTOR_B.Target = Vx*(1+(WheelSpacing/(2*AxleSpacing))*tan(Vz*PI/180));//The on-

wheel speed should be calculated according to the actual front wheel angle Vz

if(Vz>0) angle=Vz*PI/180*Servo_Wheel_ratio_L;// Symmetry processing on the left and

right sides of the servo

else angle=Vz*PI/180*Servo_Wheel_ratio_R;// Symmetry processing on the left and

right sides of the servo

if(1) Servo = -angle*K;// Here is the rotation angle of the servo

}

The input of the function is X and Y axis speed and front wheel steering angle, K

is the correction coefficient of the steering gear control, Axle_Spacing is the

wheelbase parameter of the car (front and rear) , Wheel_spacing is the wheelbase

parameter of the car (left and right) .

第 36 页 共 53 页

4.3 Mecanum wheel car

Figure 4 -3 Kinematics model of mecanum wheel car

1 kinematic analysis

To simplify the mathematical model of kinematics, the following two idealized

assumptions are made:

(1) The omni wheel does not slip with the ground, and the ground has sufficient

friction;

(2) The 4 wheels are distributed on the 4 corners of the rectangle or square , and

the wheels are parallel to each other.

Here we linearly decompose the rigid body motion of the car into three

components, then only need to calculate the speed of the four wheels when the

wheel-wheel chassis is moving along the X+,Y+ and Z+ directions, and then the

formula can be combined to calculate the rotational speed of the four wheels required

for the "translation + rotation" movement synthesized by these three simple

第 37 页 共 53 页

movements .

Wherein , AV , BV , CV , DV respectively A , B , C , D four wheel rotational speed,

i.e. the rotational speed of the motor; xV is the translation speed of the car along the X

axis, yV is the translation speed of the car along the Y axis, and  is the rotation

speed of the car along the Z axis; 2
Da 

is half of the tread D of the car, and 2
Hb 

is half of the wheelbase H of the car.

When the car moves along the X axis:

AV =+ xV BV =+ xV CV =+ xV DV =+ xV

When the car moves along the Y axis:

AV =+ yV
BV =- yV

CV =+ yV
DV =- yV

When the car rotates around the geometric center:

AV =+ ）（ ba BV =+ ）（ ba CV =+ ）（ ba DV =+ ）（ ba

Combine the above three sets of equations to calculate the speed of the four

wheels according to the motion state of the car:

AV = xV + yV - ）（ ba

BV = xV - yV - ）（ ba

CV = xV + yV + ）（ ba

DV = xV - yV + ）（ ba

2 C language implementation

void Drive_Motor(float vx,float vy,float vz)

{

MotorTarget.A = (vx+vy-vz*(Wheel_spacing+Wheel_axlespacing));

MotorTarget.B = (vx-vy-vz*(Wheel_spacing+Wheel_axlespacing));

MotorTarget.C = (vx+vy+vz*(Wheel_spacing+Wheel_axlespacing));

MotorTarget.D = (vx-vy+vz*(Wheel_spacing+Wheel_axlespacing));

}

Wheel_axlespacing is the wheelbase parameter of the car (front and rear) , and

Wheel_spacing is the wheelbase parameter of the car (left and right) .

第 38 页 共 53 页

4.4 Omni wheel car

Figure 4 -4 Kinematics model of omni wheel car

1 kinematic analysis

Before motion modeling, in order to simplify the mathematical model of

kinematics, the following idealized assumptions are made:

(1) The omni wheel does not slip with the ground, and the ground has sufficient

friction;

(2) The axis center of the motor is exactly the center of gravity of the chassis;

(3) Each wheel is installed at 120 ° absolutely mutually .

Through simple speed decomposition, the following formula can be obtained:

ωYA LVV 

ωYxB LVSin30-V-Cos30V 

ωYxC LVSin30-VCos30V 

That is , ωYA LVV 

ωYxB LV
2
1-V

2
3-V  ,

第 39 页 共 53 页

ωYxC LV
2
1-V

2
3V 

ω is the angular velocity of the robot, L for the whole distance to the wheel

center and the center of the chassis, and AV , BV , CV respectively 3 -wheel rotational

speed, Vx and Vy are the motion speeds of the robot in X and Y directions.

2 C language implementation

void Drive_Motor(float vx,float vy,float vz)

{

MotorTarget.A = +vy+vz*Parament.Z;

MotorTarget.B = -vx*Parament.X-vy*Parament.Y+vz*Parament.Z;

MotorTarget.C = +vx*Parament.X-vy*Parament.Y-vz*Parament.Z;

}

2
3Parament.X  、

2
1Parament.Y  、 1Parament.Z  ,corresponding to our

kinematic analysis parameters.

4.5 Four-wheel drive car

Figure . 4 -5 four-wheel kinematics model

1 kinematic analysis

To simplify the mathematical model of kinematics, the following two idealized

assumptions are made:

第 40 页 共 53 页

(1) The wheels do not slip against the ground, and the ground has sufficient

friction;

(2) The 4 wheels are distributed on the 4 corners of the rectangle or square , and

the wheels are parallel to each other.

Four-wheel drive vehicles use rubber wheels. Here we linearly decompose the

rigid body motion of the car into two components, then just calculate and output the

speed of the four wheels when the chassis translates in the X+ direction and rotates in

the Z+ direction. Through the combination of the formula, we can calculate the

rotation speed of the four wheels when the "translational + rotational" movement

synthesized by these three simple movements is needed.

Where AV , BV , CV and DV are the rotating speeds of wheels A, B, C and D

respectively,i.e. the rotational speed of the motor; xV is the translation speed of the

car along the X axis;  is the rotation speed of the car along the Z axis; 2
Da 

is half

of the trolley wheelbase D, 2
Hb 

is half of the trolley wheelbase H.

When the car moves along the X axis:

AV =+ xV BV =+ xV CV =+ xV DV =+ xV

When the car rotates around the geometric center:

AV =+ ）（ ba BV =+ ）（ ba CV =+ ）（ ba DV =+ ）（ ba

Combine the above three sets of equations to calculate the speed of the four

wheels according to the motion state of the car:

AV = xV - ）（ ba

BV = xV - ）（ ba

CV = xV + ）（ ba

DV = xV + ）（ ba

2 C language implementation

第 41 页 共 53 页

void Drive_Motor(float vx,float vy,float vz)

{

MotorTarget.A = (vx-vz*(Wheel_spacing+Wheel_axlespacing));

MotorTarget.B = (vx-vz*(Wheel_spacing+Wheel_axlespacing));

MotorTarget.C = (vx+vz*(Wheel_spacing+Wheel_axlespacing));

MotorTarget.D = (vx+vz*(Wheel_spacing+Wheel_axlespacing));

}

Wheel_axlespacing is the wheelbase parameter of the car (front and rear) , and

Wheel_spacing is the wheelbase parameter of the car (left and right) .

4.6 PI control program source code

What is obtained through kinematic analysis is the target speed of the motor. We

need to send this target value to the PID controller for speed closed-loop control, so

that the actual output speed of the motor approaches the target value. The PI controller

source code in the program is as follows:

/*** *************************

* Function: Incremental PI controller speed control

* Entry parameters: Encoder : encoder measurement value, Target : target speed

* Return value: Pwm : Motor PWM

* Function description: pwm+=Kp[e (k) -e(k-1)]+Ki*e(k) incremental PI control

** ************************/

int Incremental_PI_A (float Encoder,float Target)

{

static float Bias,Pwm,Last_bias;

Bias=Target-Encoder; // Calculate the deviation

Pwm+=Velocity_KP*(Bias-Last_bias)+Velocity_KI*Bias; // Incremental PI

controller

if(Pwm>7200)Pwm=7200;

if(Pwm<-7200)Pwm=-7200;

Last_bias=Bias; //Save the last bias

return Pwm; // Incremental output

第 42 页 共 53 页

5. Wiring instructions

This chapter mainly demonstrates several key wiring instructions. Please refer to

the figure directly for specific wiring. The STM32 controller integrates dual 5V power

supplies: The STM32 controller has two 5V power outputs; one 5V power supply

supplies power to the STM32 controller and peripherals (encoders, Bluetooth, handles,

etc.), and the other 5V power supply outputs to the Raspberry Pi power supply.

1 Raspberry Pi power supply

The 5V power circuit of the Raspberry Pi is integrated on the adapter board of

the STM32 controller, and it uses a TYPE-C to TYPE-C cable that can pass a current

of more than 3A .

Figure 5-1-1 Raspberry Pi power supply wiring

2 Serial communication between Raspberry Pi and STM32 controller

Because the Raspberry Pi is used as a host computer to communicate with the

STM32 controller, the default selection is the serial port 3 integrated with the CP2102

level conversion chip .

第 43 页 共 53 页

Figure 5-1-2 Raspberry Pi and STM32 communication

3 Raspberry Pi connect to the navigation radar

The connection between the Raspberry Pi and the radar here is a normal

Mirco-USB cable. The Raspberry Pi also communicates with the radar while

powering the radar.

Figure 5-1-3 Wiring of Raspberry Pi and Lidar

4 A detailed description diagram of the peripherals of the STM32

controller

第 44 页 共 53 页

Figure 5-1-4 STM32 controller description diagram

第 45 页 共 53 页

6. Control flow chart

6.1Control flowchart of robot motor
The robot supports 6 control modes, and the principles of these 6 control modes

are realized by changing the target speed of the robot. The target speed obtains the

actual output of each motor through the kinematic analysis function, and finally

realizes the speed control of the motor through the PID controller (PID speed control

function).

Figure 6-1 Robot motor control flow chart

第 46 页 共 53 页

6.2 Robot STM32 program structure diagram

Figure 6-2 The program execution flowchart of the robot STM32 controller

The RTOS task scheduler determines the execution order of tasks according to

the priority of the task (the task order in Figure 6-2 does not represent the task

priority, the specific task priority needs to check the priority setting in the program),

and the execution time of each task is very short, so it is almost equivalent to

executing all tasks at the same time. If an interrupt occurs during this period, it will

respond to the interrupt. The serial port 2 interrupt is used for APP Bluetooth control,

and the serial port 3 interrupt is used to receive information from ROS .

Figure 6 -3 Part of the program affected by Car_Mode

第 47 页 共 53 页

6.3 Robot controller connection diagram

Many controllers and peripherals are used in the robot, including: Raspberry Pi

(Jetson Nano), laser radar, STM32 controller, motor, encoder, dual-channel drive,

Bluetooth, PS2 handle, Hot-RC remote control, gyroscope, etc., At the same time,

serial port 1 and CAN interface are provided to facilitate users to expand control. The

connections between these controllers and controllers, and peripherals and controllers

are shown in Figure 6-3 .

Figure 6-4 Robot controller connection diagram

第 48 页 共 53 页

7. Matters needing attention

7.1 About the code

The programming method on the robot STM32 controller is based on the RTOS

system, which is different from the interrupt control method. The RTOS is executed in

the form of tasks in turn, and tasks with higher priority have higher execution priority

(interrupt priority is higher than task priority). It should be noted that if a task has an

execution logic error, the program will be stuck at the error and cannot continue. For

example: If there is a sending task of serial port 3 in the program , but the serial port 3

is not initialized or the initialization code is wrong, the program will get stuck when

executing the sending task of serial port 3 . Therefore, if the program is stuck during

debugging and cannot be executed normally, you need to check whether there is a bug

stuck o task by task .

7.2 About the power interface on the adapter board

The 5V and 3.3V pins on the adapter board can supply external power, but they

cannot carry loads with too much current. Among them, 5V output is not

recommended to carry a load exceeding 1.5A , and 3.3V output is not recommended

to carry a load exceeding 200mA . As you can see from the schematic diagram of the

adapter board provided by us, the adapter board is equipped with two 5V power

circuits, one of which supplies power to the basic peripherals, and the other

independently supplies power to the Raspberry Pi (Jetson Nano) (USB female

socket). Wiring instructions are explained in detail in Chapter 5 " 5.Wiring

Instructions".

7.3 About the motor

Avoid blocking the motor during use, otherwise it is easy to burn the

motherboard. Before the robot is completely tested and passed, please stand up the

robot and let the motor hang in the air to avoid unnecessary damage caused by

第 49 页 共 53 页

misoperation.

7.4 About the battery

The battery voltage is displayed on the display. When the battery is low (less

than 10.8V), please charge it in time. The battery comes with over-discharge and

over-charge protection. Please do not use the battery when charging the battery. The

battery charging connection is shown in Figure 7-4-1 .

Figure 7-4-1 Wiring diagram of robot battery and charger

After the battery is charged, the cover of the charging port should be closed to

prevent the battery from being disconnected by accidental touch, as shown in Figure

7-4-2 .

Figure 7-4-2 Robot battery charging cable interface

第 50 页 共 53 页

8. How to download program to STM32
controller

The STM32 controller can download the program through the serial port or the

SWD interface. The serial port is downloaded via the USB data cable, and it is given

by default. The SWD interface recommends using the STlink of the metal shell to

download, and you need to bring your own.

8.1 Serial download
The motherboard uses a one-click download circuit, which is very convenient for

downloading programs. All you need is a microUSB cable.

1 Hardware preparation

hardware:

1.STM32 controller

2. MicroUSB mobile phone data cable

2 Software preparation

Software: mcuisp recovering software (included in the attached information), the

corresponding USB to TTL module CH340G driver. There are also drivers in the

attached materials. If the driver installation is really difficult, download a driver

wizard.

After the installation is successful, you can open the device manager to see, you

can see that the driver has been installed successfully, otherwise there will be a red

exclamation mark.

Figure 8-1-1 Device manager view CP210x driver

The wiring of the serial port download program is very simple, just connect the

第 51 页 共 53 页

data cable to the computer and the board. Open the mcuisp software in the attached

document and set it according to the operation sequence in Figure 8-1-2 .

Figure 8-1-2 mcuisp download program configuration description

OK, everything is ready, and then click to start programming, the program can be

downloaded. Since the option to execute after programming is checked, the program

will run automatically after downloading. (Note: It is forbidden to check the Program

OptionBytes when ISP . If you are using an F4 board, the baud rate needs to be set to

76800)

8.2 SWD download
The STM32 controller can download the program through the SWD interface,

there are marks on the motherboard, PA13 and PA14 respectively .

1 Hardware preparation

1.STM32 controller

2.STlink

2 Software preparation

Install the corresponding STlink or Jlink driver.

第 52 页 共 53 页

After the installation is successful, you can open the device manager to see if the

STLink device is displayed again .

Figure 8-2-1 Device manager view STlink driver

You can see that the driver has been successfully installed!

3 Wiring

STlink ----------------- STM32 controller

SWDIO-----------------PA13

SWCLK-----------------PA14

GND--------------------GND

OK, everything is ready.

4 program

Click the button pointed by the arrow in Figure 8-2-2 , and the program can be

downloaded! Since the option to execute after programming is checked, the program

will run automatically after downloading. The default program configuration is for

STlink , if you need to configure Jlink download, you need to modify the MDK

settings.

第 53 页 共 53 页

Figure 8-2-2 STlink download program interface

	Preface
	1.Robot control mode
	1.1Robot movement speed unit
	1.2ROS (serial port 3) control
	 ①virtual machine remotely logs in to the robot ubun
	 ②Run the function package
	 ③ STM32 sends data to ROS
	 ④ STM32 receives the data sent by ROS

	1.3 APP control
	 ①Online tuning
	 ②APP control robot

	1.4PS2 control
	1.5Hot-RC remote control
	1.6 CAN control
	1.7Serial port 1 control

	2.OLED display content
	2.1OLED specific content
	 ①Tank vehicles
	 ②Ackerman car
	 ③Two-wheel differential car
	 ④Omni-wheel car
	 ⑤Mecanum-wheel car
	 ⑥Four-wheel drive car

	2.2 OLED universal display content
	 ①Control mode
	 ②Enable switch

	2.3car self-inspection

	3.Elimination of gyroscope zero drift
	4.Robot kinematics analysis
	4.1Two-wheel differential (tracked vehicle) car
	 ①kinematic analysis
	 ②C language implementation

	4.2Ackerman car
	 ①kinematic analysis
	 ②C language implementation

	4.3Mecanum wheel car
	 ①kinematic analysis
	 ②C language implementation

	4.4Omni wheel car
	 ①kinematic analysis
	 ②C language implementation

	4.5 Four-wheel drive car
	 ①kinematic analysis
	 ②C language implementation

	4.6PI control program source code

	5.Wiring instructions
	 ①Raspberry Pi power supply
	 ②Serial communication between Raspberry Pi and STM3
	 ③Raspberry Pi connect to the navigation radar
	 ④A detailed description diagram of the peripherals

	6.Control flow chart
	6.1Control flowchart of robot motor
	6.2Robot STM32 program structure diagram
	6.3Robot controller connection diagram

	7.Matters needing attention
	7.1About the code
	7.2About the power interface on the adapter board
	7.3About the motor
	7.4About the battery

	8.How to download program to STM32 controller
	8.1 Serial download
	 ①Hardware preparation
	 ②Software preparation

	8.2 SWD download
	 ①Hardware preparation
	 ②Software preparation
	 ③Wiring
	 ④program

	1.

